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A detailed analysis of the classical nonlinear dynamics of a single driven square potential barrier with
harmonically oscillating position is performed. The system exhibits dynamical trapping which is associated
with the existence of a stable island in phase space. Due to the unstable periodic orbits of the KAM structure,
the driven barrier is a chaotic scatterer and shows stickiness of scattering trajectories in the vicinity of the
stable island. The transmission function of a suitably prepared ensemble yields results which are very similar
to tunneling resonances in the quantum mechanical regime. However, the origin of these resonances is different
in the classical regime.
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I. INTRODUCTION

Harmonically driven potentials appear in many areas of
modern physics, particularly in mesoscopic electronic semi-
conductor devices and other microstructure and nanostruc-
ture driven by external voltages or applied laser fields. They
also play a role for ultra-cold atomic wave packets exposed
to optical barriers and photoinduced dynamics in strong laser
fields or dissociation processes of molecules on solid sur-
faces. The strong external driving of the system typically
leads to nonlinear quantum effects and chaos in the corre-
sponding classical systems. Two archetypical potentials have
been investigated in detail in the literature, the driven poten-
tial well and the driven potential barrier. The periodic driving
can be either a driving of the height or of the position of the
potential. In the following, we will give a short overview of
the known features of these systems.

An early study of a vertically oscillating rectangular po-
tential barrier, i.e., a potential with harmonically oscillating
height, in �1� aimed to derive an expression for the tunneling
time through potential barriers. Particles interacting with a
driven potential barrier can absorb or emit quanta of ��,
where � is the driving frequency. This leads to frequency-
dependent resonances in the tunneling probability through
the vertically oscillating barrier, as shown in �2� for a rect-
angular barrier and a raised cosine potential. These reso-
nances can, according to �3�, be interpreted as poles of the
scattering amplitudes in the complex plane. If the potential
barrier is a delta function, it possesses a set of leaky bound
states, which have been detected in �4� by locating the com-
plex energy poles of the transmission amplitude. These semi-
bound states lead to additional resonances in the transmis-
sion function. Other works analyzed the tunneling through a
vertically driven Gaussian-shaped barrier �5� and through the

“Eckart” barrier �6�. Both found an amplification of tunnel-
ing for intermediate frequencies, but did not detect a reso-
nant behavior, which is due to the parameters chosen in these
works, according to �7�. A vertically oscillating rectangular
barrier, enclosed in a rigid potential box, has been studied in
the classical regime, see Refs. �8–10�. The phase space of
this system is mixed, with a purely chaotic layer at low en-
ergies, KAM islands at intermediate energies and invariant
spanning curves at high energies. The distribution of trans-
versal times through the oscillating barrier is asymptotically
algebraic with an exponent �=−3. The Lyapunov exponent
in the chaotic sea was also calculated for this system in �10�
as a function of the parameters. The Lyapunov exponent
changes abruptly whenever an invariant spanning curve,
separating different parts of the chaotic sea, is destroyed. If
the driving is stochastic instead of harmonic, the system has
no invariant spanning curve for high energies and the par-
ticles exhibit normal Fermi acceleration �10�.

A laterally oscillating potential is often the result of a
“Kramers-Henneberger” transformation of an ac-driven
static potential. For high driving frequencies the tunneling
probability through an ac-driven rectangular barrier shows
resonances at small energies for which the static barrier
would be entirely nontransparent, see �11,7�. This can be
described as resonant tunneling into quasistable bound states
of the effective time-averaged potential, which has a double-
barrier structure. For intermediate frequencies, the scattering
process is dominated by inelastic processes and strong side-
bands in the energy spectrum �7�. Such a resonant behavior
was not found in the ac-driven Gaussian-shaped barrier �5�
and the “Eckart” barrier �6�. Instead, these two systems ex-
hibit phase-sensitive tunneling resonances for intermediate
frequencies, which can be explained by an increase in the
relative kinetic energy of incoming particles when the barrier
approaches them. A moving potential barrier can also be
used to tailor wave packets or to split an initial pulse into
several well-separated coherent pulses, see �12,13�.

Potential wells with oscillating bottom have been studied
in �14,15�. In the classical regime, the oscillating square well
is pseudointegrable and therefore not a chaotic scatterer �see
also �16��, whereas the oscillating smooth well has a stable
KAM island in phase space which leads to chaotic scattering.
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In the quantum mechanical regime both the smooth and the
rectangular oscillating well accommodate quasibound Flo-
quet states. Multiphoton processes couple incoming particles
to these states, leading to resonances, which are visible as
dips in the transmission function and as peaks in the dwell
time.

The tunneling through the laterally oscillating square well
has resonances due to quasi-bound Floquet states as well
�14,15�. However, due to the lateral driving these states be-
long to an effective double-well potential which leads to the
formation of tunneling doublets. In the classical regime, the
ac-driven square well has a stable KAM island in phase
space which leads to chaotic scattering. A signature of this
KAM island is visible in representations of scattering wave
functions in terms of Wigner functions. The avoided cross-
ings of the Floquet quasienergies of that system are studied
in �17�. Sharp crossings of quasienergies lead essentially
only to a relabeling of the states, whereas broad crossings, in
which more than two states take part, completely alter the
Floquet states and increase the high harmonic generation.

Many other elementary systems have been studied as
well: The so-called tunneling diode, which consists of an
oscillating quantum well between two static barriers, is in-
vestigated in �18,19�. In this system the driving creates ad-
ditional sidebands due to the absorption or emission of os-
cillation quanta ��. The transmission through all sidebands
exhibits a strong quenching at certain parameters. The clas-
sical phase space of an infinite array of vertically oscillating
potential wells is mixed chaotic at small energies and has
regular spanning curves at high energies, see �16�. The mo-
tion of a particle in such a system resembles closely a ran-
dom walk. Driven double wells have been studied in �20,21�.
The periodic driving can be used in these systems to entirely
suppress the tunneling between the two wells, if the driving
frequency is tuned to an exact crossing of the Floquet ener-
gies of the ground-state doublet of the unperturbed double
well.

Although several works deal with the tunneling through a
laterally driven square potential, the classical dynamics in
this system is largely unknown. The transmission of classical
particles through a laterally driven Gaussian-shaped potential
has already been calculated in �5�. However, this work does
neither cover the whole range of possible parameters nor
does it give any clue about the phase-space structure, which
is essential for the scattering process. The aim of this work is
to close this gap and to provide a comprehensive survey of
the periodically driven square barrier with oscillating posi-
tion in the classical regime. We will analyze the entire phase
space, where we find stable KAM islands, understand the
underlying dynamics and the chaotic scattering process. We
will also explore the full range of possible system parameters
and make comparisons with quantum mechanical results for
the transmission probability.

This work is organized as follows: In Sec. II we introduce
the system of the driven barrier and derive a mapping to
describe the dynamics. In Sec. III we analyze the phase space
where we find a stable island of quasiperiodic orbits. The
position, size, and parameter dependence of the stable island
is studied in detail. The scattering dynamics, particularly the
influence of the stable manifolds of the unstable periodic

orbits, are the subject of Sec. IV. Due to the existence of the
stable island, the scattering dynamics is chaotic and trapping
in the sticky region of phase space is possible although the
barrier is purely repulsive. Comparisons of the classical
transmission probability with the quantum mechanical tun-
neling probability are made in Sec. IV A. Finally, a summary
is given in Sec. V.

II. DRIVEN BARRIER AND ITS MAPPING

Our classical system consists of a one-dimensional later-
ally oscillating potential of a finite and constant height V0
and width l, see Fig. 1. The driving function is assumed to be
harmonic, with a driving amplitude a0 and frequency �,

V�x,t� = V0�� l

2
− �x − a0 cos��t��� . �1�

.
Although the dynamics of the system is continuous, the

forces acting on the particle are pointlike and the particles
move ballistically between collisions with either of the edges
of the barrier. Therefore, it is sufficient to describe the dy-
namics in terms of a discrete mapping between collisions. To
describe the particle-barrier interaction, we transform all co-
ordinates into the frame of reference of the barrier, to the
variables x̃ and ṽ. Even though this coordinate frame is ac-
celerated and, therefore, not an inertial frame, momentum
and energy are conserved for the infinitesimally small time
span of the interaction,

x → x̃ = x − a0 cos��t�, v → ṽ = v + a0� sin��t� . �2�

When colliding with the barrier from the outside a particle of
mass m is transmitted into the barrier if its kinetic energy,
relative to the barrier, surpasses the barrier height V0,

x

l

scattering region

a
0

cos(ωt)V
0

FIG. 1. The ac-driven potential barrier.
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Ekin =
m

2
ṽn

2 � V0. �3�

In this case the particle is decelerated due to energy conser-
vation

ṽn+1 =	 2

m
�Ekin − V0� . �4�

If it is not transmitted, it is reflected and its new velocity
becomes

ṽn+1 = − ṽn. �5�

Likewise, if a particle hits the barrier coming from its inside,
it is always transmitted and accelerated,

ṽn+1 =	 2

m
�Ekin + V0� . �6�

Transforming these equations back to the laboratory frame
yields the equations of motion

vn+1 = vb�tn+1� + sign�vn

− vb�tn+1��	�vn − vb�tn+1��2 �
2

m
V0, �7�

for transmission and

vn+1 = 2vb − vn, �8�

if the particle is reflected, where vb�t�=−a0� sin��tn+1� is the
barrier’s velocity at the time of the collision tn+1 and the sign
� depends on whether the particle is transmitted into the
barrier ��� or leaves the barrier ���. The time tn is mapped
on the time tn+1 of the next collision of the particle with one
of the barrier’s edges. Therefore, tn+1 is the smallest solution
of

xb�tn+1� = xn + vn�tn+1 − tn� , �9�

where xb can be either edge of the barrier, xb=a0 cos��t� or
xb=a0 cos��t�+ l. If Eq. �9� has no solutions for tn+1	 tn then
the particle does not collide with the barrier again and es-
capes. This implicit equation can be solved only numerically.
It is important to make sure that the numerically calculated
collision time is the smallest solution of Eq. �9�, because
many effects, like stickiness in phase space �see Secs. III and
IV�, are susceptible to errors in the time mapping.

The mapping shows that the five parameters of the sys-
tem, the barrier’s height V0 and thickness l, the driving fre-
quency �, the amplitude a0 and the particle’s mass m, can be
reduced to just two effective parameters by an appropriate
scaling transformation. Equations �7� and �8� then become

x → x� =
x

a0
, t → t� = t�, v → v� =

v
�a0

, �10�

vn+1� = − sin�tn+1� � + sign�vn� + sin�tn+1� ��


	�vn� + sin�tn+1� ��2 �
V0

V�

, �11�

vn+1� = − 2 sin�tn+1� � − vn�. �12�

The only parameter left in the mapping is
V0

V�
, where V�

= m
2 a0

2�2 is the maximum kinetic energy that a particle, which
is at rest in the laboratory frame, can have in the barrier’s
frame of reference. The second parameter, l

a0
, is the barrier’s

thickness measured in units of the amplitude and appears in
the implicit equation �9� for the time mapping. In the follow-
ing, we will scale the energy in units of V� and use the scaled
coordinates in all calculations while keeping the same nota-
tion. The system is therefore completely described by the
two parameters V0 and l.

III. PHASE-SPACE STRUCTURE

We visualize the structures in phase space in terms of
Poincaré surface of sections by mapping all collisions of the
particle with either side of the barrier to the Poincaré section.
This is equivalent to mapping all intersections of the trajec-
tories in the three-dimensional phase space with the two-
dimensional manifold � defined by the barrier’s motion

� = 
� t

xb�t�
v

��t,v � Re
 ,

where xb�t� is the position of either of the barrier’s edges.
Since the driving function is assumed to be periodic, we can
use the phase �, defined as �t mod 2
, instead of the time as
a coordinate. The mapping naturally operates only on the
manifold defined by �, because it always maps a point in
phase space on the point of the next collision with the bar-
rier. The Poincaré section is made unique by mapping only
intersections with one chosen edge of the barrier in a speci-
fied direction, i.e., v	vb or v�vb, instead of all collisions.
Thus, the position and phase � are uniquely connected by the
driving function and one of the two coordinates becomes
redundant. In the following, we will discuss Poincaré sec-
tions in which we plot the particle’s velocity after a collision
over the phase � of the oscillating barrier.

We covered the entire phase space with a fine grid of
initial conditions to guarantee that all relevant structures are
being shown in our Poincaré sections. The resulting Poincaré
section is plotted in Fig. 2�a�. The system’s parameters are
V0=0.32 and l=0.4. These parameters are typical for an ex-
perimental setup using semiconductor structures driven by
external voltages or applied laser fields �22,23�.

The phase space of the ac-driven barrier has four stable
KAM islands whose center is a stable periodic orbit of period
4. This means that, through the driving, the repulsive poten-
tial can trap particles in a small part of phase space. This
kind of dynamical trapping works only for a harmonic driv-
ing law or other similarly curved functions. The periodic
orbit at the center of the island is stable because it lies sym-
metrically around the inflection points of the harmonic driv-
ing function. A sawtooth-shaped driving function, for ex-
ample, does not create stable orbit �39�. An enlargement of
the fourth island in Fig. 2�a� is plotted in Fig. 2�b� and shows
the typical structure of an elliptic fixed point surrounded by a
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stable island of quasiperiodic orbits and chains of subislands,
which are the remnant of dissolved quasiperiodic orbits. The
thin transition zone at the edge of the island is mixed chaotic
and contains a fractal structure of subislands. The space out-
side the stable orbits contains only a few points because this
part of phase space is visited only by trajectories which leave
the open system after a few collisions, whereas those on
regular orbits stay in the scattering region �defined as the
space that is covered by the barrier’s oscillation� indefinitely.
The Poincaré section in Fig. 2�a� is not unique because it
shows all collisions, with both edges of the barrier and in
both directions. Structures 1 and 4 correspond to collisions
with the left-hand edge, structures 2 and 3 correspond to
collisions with the right-hand edge. The four regular islands
are symmetrical, the first and second structures are identical
to the third and fourth with their phases increased by 
 and
the sign of their velocity inverted. This reflects the symmet-
ric properties of the driving function a0 cos��t�, cos�
−��
=cos�
+�� and cos�
 /2−��=−cos�
 /2+��.

The trajectory of the central periodic orbit of the stable
island, plotted in Fig. 3�a�, is the following: Starting from the
left of the barrier at �4� with a velocity of zero, the particle is
hit by the barrier at �1�. Due to the relatively high negative

velocity of the barrier at �1, the particle is transmitted into
the barrier and accelerated in the negative direction. This
creates the stable fixed point of the island 1 in Fig. 2�a� and
the corresponding stable island 1 if we vary the initial con-
ditions in the neighborhood of the fixed point. The barrier
then overtakes the particle inside of it and the particle col-
lides with the right-hand edge of the barrier at �2�. Since the
velocity of the barrier at the points �1� and �2� is identical
�vb��1�=vb��2��, the velocity of the particle becomes zero
again. This collision corresponds to island 2 in Fig. 2�a�.
After the barrier has reached its minimum position and turn-
ing point at �=
, it moves back in positive direction and hits
the particle at �3�. This collision accelerates the particle in
positive direction and the particle moves with the barrier
until it is overtaken by it at �4�, where the velocity of the
particle becomes zero again and the periodic cycle starts
again. Due to the symmetry of the driving function �cos����,
the collisions �1� and �2� are symmetrical to �3� and �4�.

The trajectories of the quasiperiodic orbits can be under-
stood as a perturbation of the periodic orbit described above.
A typical trajectory of such an orbit is plotted in Fig. 3�b�
and shows both modes of the motion: The periodic hopping
between the four islands inherited form the stable periodic

FIG. 2. �a� A typical Poincaré section showing trapped particles. �b� Enlargement of island 4.
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FIG. 3. Motion of trapped particles. The black line represents the particle, the two gray lines represent the edges of the barrier. �a� is the
trajectory associated with the central periodic orbit of the stable island, �b� is a typical trajectory of a quasiperiodic orbit. The numbers in �a�
correspond to the island numbers in Fig. 2�a�.
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orbit and an overlaid harmonic oscillation. This sinusoidal
motion is represented as closed orbit in the Poincaré section.
The frequency of this harmonic oscillation, measured by a
Fourier transformation, is equal to the frequency by which
the particles rotate on the quasiperiodic orbit around the el-
liptic fixed points in the Poincaré section.

It is possible to calculate the position of the central elliptic
fixed points, here we will do it for island 1. As Fig. 3�a�
shows, the velocity of the periodic orbit is zero while the
particle is outside of the barrier in structures 2 and 4 �v0
=v2=0�. Due to the symmetry of the system, the collision
points are symmetric around 


2 in their phases �1 and �2
��2=
−�1� and around the equilibrium position in their po-
sitions x1 and x2. Therefore, the velocity in structure 1 must
be

v1 =
�x

�t
= −

xb��1� −
l

2

�


2
− �1� , xb��1� = cos��1� , �13�

where xb is the position of the left-hand edge of the barrier.
This velocity can be calculated from Eq. �7�,

v1 = vb��1� + sign�v0 − vb��1��	�v0 − vb��1��2 − V0.

�14�

The initial velocity v0 is zero and vb=−sin���. The result is
an implicit equation for �1,

f��1� ª �2 cos��1� − l


 − 2�1
�2�2 sin��1��
 − 2�1�

2 cos��1� − l
− 1� = V0.

�15�

This implicit equation determines the phase of the first
elliptic point. For values of l� �0,2�, the equation f���=V0

has two solutions in the interval �0, 

2 �. The physically rel-

evant solution lies to the right of the function’s maximum.
For V0	 fmax, where fmax is the maximum value of f at a
chosen value of l, the implicit equation �15� has no solutions.
This means that the barrier’s potential is too strong to allow
for trapped orbits. The function has no positive values for l
�2 and the second root is greater than 


2 for l=0. The ellip-
tic orbits disappear in both cases. Figure 4 shows the maxi-
mal value of f��� as a function of l. Only pairs of parameters
�V0 , l� below the curve allow for trapping of particles. For
sets of parameters �V0 , l� above the curve in Fig. 4 the phase
space contains no bound orbits. To be precise, the central
periodic orbit does not just become unstable for other param-
eters. The periodic orbit, the surrounding elliptic island, and
all unstable periodic orbits cease to exist

The maximal values of V0=1 and l=2 can be easily un-
derstood physically: V� is the maximum kinetic energy a
particle can have in the barrier’s frame of reference if it is at
rest in the laboratory frame. If V0 is greater than V�, then
particles with velocity zero will never be transmitted into the
barrier. Since all stable orbits cross the v=0 axis, this would
destroy all of them. For l	2, v1 in Eq. �13� would have to be
positive, which is physically impossible �see discussion of
the periodic orbit, Fig. 3�a��.

The phases of the other fixed points can be calculated
from the phase and position of the fixed point of island 1 by
using the symmetry properties of the driving function,

�2 = 
 − �1,

�3 = 
 + �1,

�4 = 2
 − �1.

The shape and size of the stable islands in the Poincaré
sections change with varying parameters. Figure 2�b� is typi-
cal for the phase space of this system: The central fixed point
and the island of quasiperiodic orbits are surrounded by a
chaotic layer with a fractal structure of stable and unstable
periodic orbits. Additionally, there exist one or more sets of
large and distinguished subislands. These can be inside the
main island, as the five subislands in Fig. 2�b�, or outside of
it. These subislands discern themselves from other KAM
substructures in several ways. They are not only much larger
than other substructures, but their creation and destruction
follows a simple pattern as the parameters are changed.
Keeping l constant while decreasing V0, the subislands of
period n move towards the outer edge of the stable island. As
V0 is decreased further, the subislands cross the outermost
quasiperiodic orbit of the main island, forming separate sub-
islands, and ultimately dissolve. Simultaneously, a new set of
subislands of period n+1 forms at the center of the stable
region and begins to move to the outside. Islands with an
even period appear as pairs, therefore the sequence of the
number of large subislands is 4, 3, 8, 5, 12, 7, …., see Fig. 5.
The sequence starts at the maximal value of V0 that allows
for bound orbits as plotted in Fig. 4. In the limit of very
small V0 the period n diverges and the subislands form al-
most a continuum that cannot be resolved numerically. Be-
tween period n=4 and n=3 the KAM island takes a triangu-
lar form and its size goes to zero. The creation and
destruction of the subislands follows the same sequence for
all l as V0 is varied, albeit on a different scale. A variation of
the barrier width l at a constant V0 leads to the same se-
quence as well. This suggests that the qualitative behavior of

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

l

V
0

FIG. 4. Maximum barrier potential allowing for periodic orbits
as a function of the barrier’s thickness. Only pairs of parameters
below this curve lead to stable orbits.

DYNAMICAL TRAPPING AND CHAOTIC SCATTERING OF … PHYSICAL REVIEW E 78, 056204 �2008�

056204-5



the phase-space structure can be described by just one effec-
tive nonlinearity parameter, consisting of a combination of l
and V0.

This sequence of subislands is typical for nonlinear sys-
tems and has been studied in detail in the standard map, see,
e.g., �24,25�. The creation and destruction of stable periodic
orbits, or rather quasiperiodic orbits in general, is tied closely
to number theory. The KAM tori can be characterized by
their winding number. It was conjectured �26� that the last
KAM tori to be destroyed when the nonlinearity is increased
are those with rotation numbers equal to noble numbers,
which can be written as continued fractions �40�. Before such
a torus with rotation number R is destroyed, all the periodic
orbits with rotation number equal to a truncation of the noble
number R become unstable. Thus, the winding numbers of
the large subislands can be interpreted as the truncations of
the simplest first-order noble numbers.

These subislands also play a significant role in the scat-
tering process. As we will demonstrate, the flow into and out
of the border zone of the stable island is dominated by the
stable and unstable manifolds of the outermost large subis-
lands, even for parameters for which the island has entirely
dissolved.

The area covered by the elliptic island changes with the
parameters as well. We analyzed numerically the surface
covered by the stable island as a function of the parameters
by dividing the phase space of the Poincaré sections into a
fine grid of 106 small squares. All squares containing data
points of the stable islands count as part of the surface. We
checked this method for its stability by doubling the number

of data points and comparing the resulting surfaces. The cor-
responding area is shown in Fig. 6 as a function of the bar-
rier’s height V0 for different values of the barrier’s width l.
The peaks of the area in Fig. 6 are well understood: The size
of the stable island is defined by two competing effects. As
the potential height V0 is decreased, the quasiperiodic orbits
move outwards, which increases the island’s size. At the
same time, outer quasiperiodic orbits are destroyed. Since
tori with noble rotation number are destroyed very late, the
covered surface reaches a maximum whenever the outermost

FIG. 5. Overview of the pa-
rameter dependence of the KAM
island. The parameters are l=0.1
and �a� V0=0.895, �b� V0=0.867,
�c� V0=0.86, �d� V0=0.76, �e� V0

=0.7, �f� V0=0.553, �g� V0=0.5,
�h� V0=0.05.
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FIG. 6. Phase-space volume of the stable island as a function of
V0 for different l.
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torus has a noble rotation number. At this point, other tori
inside this noble torus have already been destroyed and the
outermost curve separates a chaotic sea inside of the island
from the outer chaotic area. When this outermost noble torus
is destroyed, the two chaotic parts become connected and the
size of the island reaches a sharp minimum. This kind of
behavior is typical for nonlinear systems, see �25,27�.

To gain further insight into the properties of the transition
zone around the stable island, we use a method developed in
�28,29� to locate the unstable periodic orbits �UPO� of this
system. Given a N-dimensional discrete chaotic dynamical
system U defined by

U:r�i+1 = f��r�i� �16�

a linear transformation is used to construct a new system Sk
defined as

Sk:r�i+1 = r�i + �Ck�f�p�r�i� − r�i� , �17�

where the matrix Ck is orthogonal, � is a small factor and p
is the period of the fixed point we want to stabilize. Evi-

dently, Sk and f�p have the same fixed points. It can be shown
that for every unstable fixed point there exists a suitable or-
thogonal transformation matrix Ck and a small factor � such
that this unstable fixed point is stable under Sk. The factor �
must be small enough so that the eigenvalues of the matrix
1+�Ck�TU−1� have absolute values smaller than 1, where
TU is the stability matrix of the system U. The matrices Ck
correspond to reflections and rotations along the coordinate
axes, thus all entries of Ck are Cij � �0, �1� and each row
and column contains only one element which is different
form zero. There exists a total number of N!2N of such ma-
trices that will, in general, stabilize different types of un-
stable periodic orbits. However, it can be shown that a much
smaller number of Ck is sufficient to find all periodic orbits
because some of the linear transformations are redundant.
Only three matrices are needed in a two-dimensional system,
see �30�. The advantage of this method over more conven-
tional approaches, such as Newton-Raphson, is the global
convergence. Even initial conditions far away from a fixed
point eventually converge if the matrix Ck and the factor �
are chosen appropriately.

In the system of the driven barrier we search for periodic
orbits in the unique Poincaré sections such as Fig. 2�b�. This
way each point in the �v ,��-plane is uniquely connected to a
point in the �x ,v , t� phase space. To find the periodic orbits
we cover the �v ,��-plane with a grid of 104 initial conditions
and iterate the transformed mapping with all three matrices
Ck and for periods of one to 21 with respect to the Poincaré
section. The parameter � is chosen between 5
10−3 and
10−5 for higher periods. A typical result is plotted in Fig. 7
which shows the unstable periodic points as black crosses,
the stable periodic orbits as black dots, and the correspond-
ing Poincaré section in gray. The stability was derived ac-
cording to the eigenvalues of the monodromy matrix. The
chaotic layer around the elliptic island contains many fami-
lies of periodic orbits which form the skeleton of the fractal
structure. The number of unstable fixed points rises exponen-
tially with their period.

The unstable periodic orbits, or rather their stable mani-
folds, play an important role for the scattering process. This
is because, although the stable island is itself not directly
accessible by initial conditions starting outside of the inter-
action area, the stable manifolds, also called stable
asymptotic curves, reach far into the part of phase space
which is accessible from the outside. In order to calculate the
flow of an unstable periodic orbit we take a small initial
segment of length 10−8 along the eigenvectors of the mono-
dromy matrix at the UPO and iterate an ensemble of 106

initial conditions in this segment forward in time along the
unstable asymptotic curves or backward in time along the
stable asymptotic curves. It is in this system not possible to
follow the manifolds of a specific UPO, because the mani-
folds of different UPOs cross each other at heteroclinic in-
tersections. Thus the flow becomes chaotic and our simula-
tions produce a global picture of the flow of the system of
UPOs. The stable and unstable manifolds, plotted in Figs.
8�a� and 8�b�, reach far out of the border region into the
chaotic sea in what looks in these plots as spiral arms, which
consist of an infinite number of stable or unstable curves.
These outer manifolds belong to periodic orbits with a period
of 3 or multiples of 3.

We calculated the asymptotic curves of the system for the
whole range of parameters and found that they are closely
tied to the large primary subislands around the island. The
flow into and out of the stable island is always dominated by
the outermost family of subislands, even if this family is
completely unstable. Therefore, the number of spiral arms
which are formed by the manifolds follows the same se-
quence as the subislands when the parameters are changed.
The unstable periodic orbits and with them their asymptotic
curves are present only for parameters which allow for the
existence of the stable island in phase space, see Fig. 4.

IV. SCATTERING DYNAMICS

The phase-space structure presented in Sec. III has pro-
found effects on scattering processes. Due to the existence of
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a KAM island in phase space, the ac-driven barrier is a cha-
otic scatterer. �See �31� for a definition.� To simulate the
scattering process we place a ensemble of particles with a
uniformly distributed velocity vin far outside of the scattering
region. The initial phase �0 �or time� is distributed in such a
way that the phase of the first collision �1 with the barrier is
uniformly distributed in �0,2
�. It makes sense to use the
initial velocity vin and the phase of the first collision �1 as
parameters of the scattering because this allows an easy com-
parison to the Poincaré sections of Sec. III, where we use
similar coordinates. The disadvantage of these coordinates is
that not all combinations of vin and �1 are accessible from
the outside of the scattering region. Thus, the following plots
have an area marked as inaccessible.

As scattering functions we examine in detail the dwell
time, defined as the time the particles spend in the scattering
region, and the change of the velocity of the particles, �vin�
− �vout�. We also determine the particles’ number of collisions
and whether the particles are transmitted or reflected. The
velocity change is plotted in Fig. 9 for V0=0.32 and l=0.4 in
a gray-scale plot. Dark surface colors represent acceleration,
bright areas stand for deceleration. In the following, we ana-
lyze the scattering process for this representative set of pa-
rameters. It is possible to discern different well separated
regions in Fig. 9 in which the scattering function is smooth.
In other regions, most prominently in a wedge-shaped part in
the center of Fig. 9, the scattering function has unresolved
parts. The scattering process is chaotic in these regions.

FIG. 8. Stable �a� and unstable �b� manifolds of the UPOs of the system.

FIG. 9. Velocity change �vin�− �vout� of the particle as a function of velocity vin and phase of the first collision �1 in gray scale.
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We discuss the case of regular scattering first: The veloc-
ity of fast particles is hardly changed at all, because fast
particles simply traverse the barrier in a very short time.
According to Eq. �7�, the transmission through the barrier is
elastic if the velocity of the barrier at the collision with the
left-hand edge of the barrier is equal to the barrier velocity at
the collision with the right-hand edge, vb��1�=vb��2�, which
is approximately the case for fast particles. The scattering of
slow particles is, in general, inelastic, particularly if a par-
ticle is reflected by the barrier, see Eq. �8�. Figures 10�a� and
10�b� show trajectories typical for acceleration and decelera-
tion, respectively.

The regular regions visible in Fig. 9 correspond to a con-
stant number of collisions, as plotted in Fig. 11. The edges of
the regular regions correspond to a change in the number of
collisions, not necessarily by one, which naturally leads to a
sudden change in the other scattering functions. The number
of collisions is small, between one to four, for all regular
scattering trajectories.

In the chaotic parts of the scattering function in Fig. 9, the
dynamics is infinitely sensitive on the initial conditions.
Therefore it is not possible to resolve the scattering function
in these areas completely. These unresolvable points are sin-
gularities. We have tested this by successively magnifying
the irregular parts of Fig. 9 up to the numerical limits. Figure
12 shows such an enlargement by a factor of 1013. The sin-
gularities of the scattering function, visible as unresolved

parts in Figs. 12 and 9, form a fractal set. Actually, the cha-
otic parts of the scattering function are predominant on
smaller scales, i.e., the smooth parts, still visible in Fig. 12,
become rare. This is typical for nonhyperbolic chaotic scat-
tering �32�.

The origin of the chaotic scattering is the stickiness of
particles to the KAM island in phase space. This can be seen
from a logarithmic plot of the dwell time in Fig. 13. The
dwell time diverges in exactly the regions in which the scat-
tering function has singularities. The number of collisions
diverges as well in these chaotic regions. �This cannot really
be seen in Fig. 11, because the color map is capped at n
=10. But the collision number reaches n=104 and more in
the white parts of the plot.� Trajectories starting on initial
conditions in the chaotic parts of the scattering function be-
come sticky and trace the outermost quasiperiodic orbits of
the stable island for arbitrary long times. The number of
collisions per time unit is therefore constant for all sticky
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FIG. 10. Typical trajectories for acceleration �a� and decelera-
tion �b� at �vin=0.4, �1=2.3� and �vin=1.5, �1=4.5�.

FIG. 11. Number of collisions of the particle as a function of
velocity vin and phase �1 represented as gray scale. The collision
number is also shown in the plot.

FIG. 12. Enlargement of part of Fig. 9 by a factor of 1013.

FIG. 13. Logarithm of the dwell time of the particle as a func-
tion of velocity vin and phase �1 represented as gray scale.
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trajectories, namely four collisions per period T of the driv-
ing function.

It is known that in most systems which exhibit chaotic
scattering, singularities in the scattering function have a di-
vergent dwell time �31�. This can be easily understood since
the scattering function is infinitely sensitive to perturbations
of the initial conditions leading to singularities which can
only be the case if the interaction time in continuous systems
or the number of interactions in discrete systems between
target and particle diverges as well.

The dwell times of sticky particles have a typical prob-
ability distribution. Figure 14 shows the distribution of dwell
times in the sticky regions of Fig. 13 for a total of more than
1010 random initial conditions. The dwell-time distribution
can be approximated by a power law P�td�� td

�. We find an
exponent of �=−2.5 from a fit to Fig. 14 between td=101 and
td=108.

The origin of the stickiness in this system are the stable
manifolds of the unstable periodic orbits described in Sec.
III. Although the KAM island itself is inaccessible by scat-
tering trajectories, the stable manifolds reach out of the in-
accessible area and intersect the set of scattering initial con-
ditions. These intersections are identical to the singularities
of the scattering function and have an infinite time delay. The
fractal structure of the scattering function in the chaotic re-
gions is just the structure of the stable manifolds, which are
formed by the unstable periodic orbits in the KAM island.

Another way of characterizing a chaotic scattering pro-
cess is to calculate the uncertainty dimension of the chaotic
part of the scattering function, which is a proxy for the frac-
tal dimension. The uncertainty dimension describes the scal-
ing with the resolution of the proportion of singular points to
regular points in a two-dimensional scattering function. As
predicted in �32� for nonhyperbolic chaotic scattering sys-
tems, such as the ac-driven barrier, the uncertainty dimension
is exactly one for all parameters that allow for the existence
of the stable KAM island.

The scattering function has two other singularities, which
are not caused by stickiness to regular structures. Such sin-

gularities are isolated and do not lead to chaotic scattering.
Nevertheless, the scattering function is infinitely sensitive to
changes in the initial conditions at these singularities. One of
them is located at vin=1 and �1=1.5
 in Fig. 9 and is called
“whispering gallery” in static systems. The dwell time, see
Fig. 13, is quite small at this point, td=T /2, whereas the
number of collisions diverges, see Fig. 11. A particle on this
trajectory hits the barrier at �1=1.5
 with a velocity slightly
larger than 1, vin=1+�. The barrier has its maximum veloc-
ity of vb=1 at this phase. The particle is reflected and the
new velocity becomes v1=2vb−vin=1−� according to Eq.
�8�. Because the barrier decelerates after �=1.5
 the particle
collides with the barrier again after a very short time at �2
�1.5
+	6�. The particle is decelerated by this collision fur-
ther to v2�2vb−v1=2�1−3��− �1−��=1−5�. This sequence
of successive collisions continues until the barrier reaches
the turning point at �=2
 from where, due to the symmetry
of the driving function, the process is inverted and the par-
ticle is accelerated by successive collisions. Since the par-
ticle has the last collision at �=0.5
 the dwell time is only
td=T /2. However, for sufficiently small � the particle can
have an arbitrarily large number of collisions, because the
time passed between the collision is proportional to �. A
typical trajectory is plotted in Fig. 15�a�.

The other singularity is a so-called low velocity peak �33�.
It only appears if the width of the barrier is larger than 2
times the oscillation amplitude, l	2, and if the potential
height is greater than the effective potential, V0	1. For
these parameters, a particle can hit the barrier at the extremal
position in �=0 at a velocity of exactly v0=	V0+�. Such a
particle is transmitted into the barrier and is decelerated to
the small velocity v1=	�. Due to the large width of the bar-
rier, the dwell time of the particle becomes approximately
td� l−2

	�
and thus diverges. A typical trajectory of a low ve-

locity peak is plotted in Fig. 15�b�.
As the parameters of the system are changed, the regular

parts of the scattering function �Fig. 9� are deformed and
shifted to different initial velocities, but remain qualitatively
similar. The shape and position of the chaotic parts stay
qualitatively similar as well, whereas their exact structure
depends critically on the parameters. This is because the cha-
otic regions are created by the stable manifolds of the UPOs.
The shape of the stable manifolds is directly connected to the
primary subislands and therefore follows the sequence of
creation and destruction described in Sec. III as the param-
eters are changed. Since the stable island and the surround-
ing unstable periodic orbits are the cause of the chaotic scat-

10
0

10
5

10
10

10
−5

10
0

10
5

10
10

dwelltime

nu
m

be
r

of
ev

en
ts

,n
or

m
al

iz
ed

data
fit

FIG. 14. The distribution of the sticking times, using a logarith-
mic adjusted bin size. By fitting a power law we found an exponent
of �=−2.5.

4 6 8

1

2

3

time

po
si

tio
n

particle
barrier
barrier

10 20 30
0

2

4

6

time

po
si

tio
n

particle
barrier
barrier

(b)(a)

FIG. 15. Singularities of the scattering function not associated
with chaotic scattering. �a� is the trajectory of a whispering gallery
orbit, �b� is a low velocity peak.

KOCH et al. PHYSICAL REVIEW E 78, 056204 �2008�

056204-10



tering, the scattering on the ac-driven barrier becomes
regular for parameters that do not allow for elliptic orbits in
phase space �see Fig. 4�. The singularity corresponding to the
whispering gallery is independent of the parameters of the
system, it exists in all harmonically laterally driven systems
and it is not a unique property of the driven barrier. The low
velocity peaks require a large barrier height V0	1 and width
l	2. Consequently, there are no parameters for which the
low velocity peaks and the chaotic scattering due to the
KAM-island coexist. It was shown in Refs. �34,35� that low
velocity peaks can lead to a new form of scattering dynam-
ics, called dilute chaos, which requires the existence of
UPOs and therefore does not appear in this system.

A. Application and comparison to the quantum behavior

We can use our knowledge of the system to make com-
parisons with established results for the dynamics of the
driven barrier in the quantum regime. The tunneling through
a periodically driven square potential barrier has been ana-
lyzed in �11�. �See also �7�.� It was found that the transmis-
sion coefficient as a function of the particle energy has reso-
nances below the minimal tunneling energy of the static
system for high driving frequencies. This can be explained
by resonant tunneling into semistable bound states of an ef-
fective time-averaged potential, which has a double-barrier
structure. We now want to compare the results in the quan-
tum regime with our classical simulations. The parameters
chosen in �11� are a0=200, l=80, m=0.1, and V0=0.0147.
The system is studied for three values of the driving fre-
quency, �=0, �=3
10−4, and �=3
10−2. The correspond-
ing effective parameters are l=0.4 and V0→�, V0=81.6, and
V0=0.0082. To imitate the transmission of a quantum wave
packet with a classical simulation we use an ensemble of
particles that is distributed as a minimal uncertainty Gauss-
ian in position and momentum space, i.e., �x�p= 1

2 . The re-
sults of our classical simulation are shown in Fig. 16.

Surprisingly, the classical simulation coincides to an
amazing degree with the results of the quantum mechanical
analysis in the high frequency limit �Fig. 16�c��. The trans-
mission in the classical system shows the same resonant be-
havior as in the quantum regime. �It should be mentioned
that a fine tuning of the initial conditions is necessary to
reproduce the resonances of �11� exactly.� Since the model of
the effective time-averaged potential Veff fails in the classical
regime, this result is surprising. The scattering of classical
particles off the static potential Veff would simply reproduce
a step function, since the classical mechanics just does not

allow any tunneling into resonant states. It is important to
note that the effective potential is generally ill suited to de-
scribe the dynamics of trapped particles in the classical re-
gime. Although the effective potential could in principle be
used to explain the existence of trapped particles for high
frequencies, we also find trapped particles for low frequen-
cies, i.e., when the driving frequency and the oscillation fre-
quency of the trapped particles are of similar order of mag-
nitude. The trapping is not caused by an effective potential
for high driving frequencies but by a synchronization of the
motion of the particle and the barrier.

The origin of the resonances of the transmission function
in the classical regime is very different from the quantum
regime. The transmission function of a single particle in Fig.
17�a� does not show any resonances as a function of the
initial energy, at least not of the form seen in Fig. 16�c�. �It
makes sense to compare the transmission function of a single
particle Fig. 17�a� with Fig. 16�c�, because using a narrowly
distributed ensemble changes the qualitative behavior very
little.� The reason is that the phase of the first collision �1,
used in Fig. 17�a� as coordinate, is not an appropriate coor-
dinate to describe this scattering process. In the simulation
leading to the transmission resonances in Fig. 16�c� the ini-
tial phase �0 is kept constant whereas �1 oscillates wildly as
a function of the energy E. When the initial velocity vin of a
particle starting at a distance of x0 from the scattering region
is changed by a small amount �v, the time when the particle
enters the scattering region is changed by �t=

x0

vin
2 �v. In all

these simulations, the initial velocity vin is very slow, there-
fore the variation of the initial energy E leads to a fast oscil-
lation of the collision phase �1. When we plot the transmis-
sion as a function of the initial phase in Fig. 17�b�, the
resonances of Fig. 16�c� become visible.

Whether an incoming particle is transmitted or reflected
depends, for small particle energies, mostly on whether the
barrier is approaching the particle or receding from it at the
time when the collision occurs. A variation of the energy for
a constant collision phase �1 has little impact on the trans-
mission probability, see Fig. 17�a�. Therefore, these reso-
nances are not really resonances of the energy of the particle,
as in the quantum regime. They are produced simply by the
propagation to the barrier, where the different collision
phases lead to peaks in the transmission probability.

It would be very interesting to analyze the similarity be-
tween the classical and the quantum case in the framework of
semiclassical physics. Doing so would require applying the
Gutzwiller formula to the periodic orbits of the system to
derive a semiclassical propagator for the system, see �36�.
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FIG. 16. Transmission function for different driving frequencies of the classical system. �a� �=0, �b� �=0.0003, �c� �=0.03.
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However, such a study is beyond the scope of this work. It
should be noted that in related systems such as an oscillating
hard-wall potential, semiclassical approximations did not
work �37,38�.

V. SUMMARY AND OUTLOOK

The aim of this work is to analyze and understand in
detail the classical dynamics of the ac-driven barrier for the
full range of parameters. Although the potential is repulsive,
the system exhibits a dynamical trapping process which is
associated with an island of stability. This trapping process
can be understood as a synchronization process between par-
ticle and barrier, which depends on the curvature of the driv-
ing law. The stable KAM island of quasiperiodic orbits in
phase space leads to topological chaos. The central periodic
orbit, and with it all stable and unstable periodic orbits, exist
only for a limited range of parameters. We determined these
parameter ranges, calculated the position of the period four
orbit, the size of the elliptic island, and its shape as a func-
tion of the parameters. The transition zone around the stable
island contains an infinite set of unstable periodic orbits, the
stable manifolds of which reach far away from the stable
island. These stable manifolds make the system a chaotic
scatterer. Initial conditions starting on the stable manifolds
are singularities and have a divergent dwell time and colli-

sion number. The singularities form a fractal set with an
uncertainty dimension of one. The system possesses two ad-
ditional types of singularities, the whispering gallery and a
low velocity peak. These are isolated singularities and are
not connected to the KAM structure in phase space. The
transmission function of a suitably prepared ensemble yields
results which are very similar to tunneling resonances in the
quantum mechanical regime. However, the origin of these
resonances is very different in the classical regime and this
sheds a new light on the high frequency behavior of the
driven barrier.

The results of this work all depend on the existence of a
dynamical trapping process. The stable orbits which we dis-
covered rely on the curvature of the harmonic driving law.
When we use a sawtooth-shaped driving law, we find no
such stable orbits. It can be assumed that other suitably
curved driving functions lead to bounded motion as well.
Likewise, our results do not depend on the exact shape of the
barrier itself.
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